Projektart:
Anfrage:
per mail ✉
Objekt:
Phänomenta Pendel-Turm
Typ:
Ausstellungsgebäude
Ort:
Lüdenscheid [Satellit]
Staat:
Deutschland
Architekt:
kkw architekten 🔗, Lüdenscheid
Materialien:
Stahl, PVC-Membran
Publiziert:
DBZ 08/2015
Seiten:
30 - 37
Inhalt:
Das Phänomenta- Pendel, Lüdenscheid
Der Turm im Leuchtturm
Lüdenscheid ist um eine Landmarke reicher: den 75 m hohen Turm der Phänomenta, einem Wissenschaftsmuseum. Er besteht aus einem stählernen Stabwerk, in das eine Membrane in helixartiger Form strumpfartig eingespannt wurde.
Die Lüdenscheider Phänomenta wurde 1996 als Technikmuseum gegründet, das vornehmlich Schülern die Welt der Physik durch Experimente anschaulich machen soll. Sie werden meist durch den Besucher aktiviert, weshalb man von „Hands-on- Exponanten“ spricht. Das Museum adaptiert das Konzept einer namensgleichen Flensburger Exponatschau, die 1985 auf den Fluren der dortigen Universität geboren wurde und 1993 in eigene Räumlichkeiten umgezogen war. Letztlich ist auch das prominente Wolfsburger Phaeno aus dem Jahre 2006 in diese Reihe einzuordnen. Ein Anlass für die Übernahme des musealen Konzeptes war der Wunsch zahlreicher, im märkischen Sauerland ansässiger und technisch orientierter Großunternehmen (Lichttechnik, Feinmechanik, Metallbau), die Jugend für ihre Themen zu begeistern und als künftige Mitarbeiter zu gewinnen.
Schon im Jahr 2000, als das Museum seinen heutigen Standort, eine gründerzeitliche Fabrik, bezog, entstand der Wunsch nach einer Landmarke. Ein Foucaultsches Pendel – also ein langes Pendel, das durch seine radiale Eigendrehung die Erdrotation erfahrbar macht - sollte in prägnanter Weise in einem separaten Turmbau ergänzt werden. Doch aus verschiedenen Gründen wurde das Projekt immer wieder verschoben, dabei variierten sowohl die architektonische Form wie auch der konkrete Standort. Erst im Jahre 2011 konnte das Altenaer Architekturbüro KKW im Rahmen einer Machbarkeitsstudie den Trägerverein für das inzwischen realisierte Konzept für sich gewinnen. Ausgeschrieben war lediglich ein Turm auf einem Museumsanbau, da die „Denkfabrik“ zwischenzeitlich zu klein geworden war. Doch Linus Wortmann, planungsverantwortlicher Partner bei KKW, war der Auffassung, dass der Anbau formal auch der Sockel des Turmes sein müsse, und verschmolz beides architektonisch.
Schon im Jahr 2000, als das Museum seinen heutigen Standort, eine gründerzeitliche Fabrik, bezog, entstand der Wunsch nach einer Landmarke. Ein Foucaultsches Pendel – also ein langes Pendel, das durch seine radiale Eigendrehung die Erdrotation erfahrbar macht - sollte in prägnanter Weise in einem separaten Turmbau ergänzt werden. Doch aus verschiedenen Gründen wurde das Projekt immer wieder verschoben, dabei variierten sowohl die architektonische Form wie auch der konkrete Standort. Erst im Jahre 2011 konnte das Altenaer Architekturbüro KKW im Rahmen einer Machbarkeitsstudie den Trägerverein für das inzwischen realisierte Konzept für sich gewinnen. Ausgeschrieben war lediglich ein Turm auf einem Museumsanbau, da die „Denkfabrik“ zwischenzeitlich zu klein geworden war. Doch Linus Wortmann, planungsverantwortlicher Partner bei KKW, war der Auffassung, dass der Anbau formal auch der Sockel des Turmes sein müsse, und verschmolz beides architektonisch.
Kaleidoskop der Querkräfte
Von vornherein sollte die Turmfassade eine transluzente Membrane sein, da ein Leuchtenhersteller als Hauptsponsor fungiert. Im ursprünglichen Konzept sollte die äußere Turmkonstruktion auch das Pendel tragen, doch das statisch hierfür verantwortliche Büro Werner Ingenieure aus Menden überzeugte alle Beteiligten von einer Turm-im- Turm- Variante. Die Bauingenieure hielten Leichtbauten, wie etwa die angedachte Stahlstabkonstruktion zum Aufspannen einer massearmen Membrane, für zu anfällig für Wind- und sonnenthermische Kräfte. Auch galt es eine Fundamentlösung zu finden, welche die von der benachbarten Eisenbahn ausgehenden Erschütterungen eliminiert. Hier sahen die Bauingenieure das Heil in schierer Masse und in einem starren Einspannen der Stahlkonstruktion in diese. Tatsächlich konnte anhand eines Finite- Elemente- Modells eine Hüllform definiert werden, bei der - selbst bei widrigsten äußeren Einflüssen - die Außenhaut den inneren Bau nicht berühren würde. Bedingt durch den ausnehmend schlanken und zusätzlich amorph gekrümmten Charakter der äußeren Textilie empfahl es sich, das Pendeltragwerk auf 26,5 m zu begrenzen, obwohl der Turm stolze 75 m misst. Da das innere Element jetzt vollkommen befreit von Seitenkräften ist, stellte es kein Problem dar, dieses als lang gestreckten Tetraeder zu realisieren, auf dessen Holme äußerlich eine mit der Außenhaut identische Membrane zu montieren und auf der Innenseite Spiegelfolie aufzuspannen, um so ein Kaleidoskop zu generieren. Etwa einen halben Meter unterhalb seiner Aufhängung schwingt das Pendel durch einen so genannten Charron- Ring. Es ist eine schmale Öffnung, an deren Rand sich das Seil zweimal pro Schwingung anlegt, was zu einem gleichmäßigeren Pendeln führt. Diese Öffnung befindet sich in der Mitte einer gleichseitigen Dreiecksfläche von knapp 1 m Kantenlänge. Darauf haben die Berliner Ausstellungsmacher beier + wellach projekte zahllose LED- Strahler, die laufend ihre Lichtfarbe wechseln, als homogene Matrix montiert. In endloser Wiederholung werden diese von der erwähnten Spiegelfolie reflektiert, und ein kaleidoskopartiger Effekt tritt ein.
Von vornherein sollte die Turmfassade eine transluzente Membrane sein, da ein Leuchtenhersteller als Hauptsponsor fungiert. Im ursprünglichen Konzept sollte die äußere Turmkonstruktion auch das Pendel tragen, doch das statisch hierfür verantwortliche Büro Werner Ingenieure aus Menden überzeugte alle Beteiligten von einer Turm-im- Turm- Variante. Die Bauingenieure hielten Leichtbauten, wie etwa die angedachte Stahlstabkonstruktion zum Aufspannen einer massearmen Membrane, für zu anfällig für Wind- und sonnenthermische Kräfte. Auch galt es eine Fundamentlösung zu finden, welche die von der benachbarten Eisenbahn ausgehenden Erschütterungen eliminiert. Hier sahen die Bauingenieure das Heil in schierer Masse und in einem starren Einspannen der Stahlkonstruktion in diese. Tatsächlich konnte anhand eines Finite- Elemente- Modells eine Hüllform definiert werden, bei der - selbst bei widrigsten äußeren Einflüssen - die Außenhaut den inneren Bau nicht berühren würde. Bedingt durch den ausnehmend schlanken und zusätzlich amorph gekrümmten Charakter der äußeren Textilie empfahl es sich, das Pendeltragwerk auf 26,5 m zu begrenzen, obwohl der Turm stolze 75 m misst. Da das innere Element jetzt vollkommen befreit von Seitenkräften ist, stellte es kein Problem dar, dieses als lang gestreckten Tetraeder zu realisieren, auf dessen Holme äußerlich eine mit der Außenhaut identische Membrane zu montieren und auf der Innenseite Spiegelfolie aufzuspannen, um so ein Kaleidoskop zu generieren. Etwa einen halben Meter unterhalb seiner Aufhängung schwingt das Pendel durch einen so genannten Charron- Ring. Es ist eine schmale Öffnung, an deren Rand sich das Seil zweimal pro Schwingung anlegt, was zu einem gleichmäßigeren Pendeln führt. Diese Öffnung befindet sich in der Mitte einer gleichseitigen Dreiecksfläche von knapp 1 m Kantenlänge. Darauf haben die Berliner Ausstellungsmacher beier + wellach projekte zahllose LED- Strahler, die laufend ihre Lichtfarbe wechseln, als homogene Matrix montiert. In endloser Wiederholung werden diese von der erwähnten Spiegelfolie reflektiert, und ein kaleidoskopartiger Effekt tritt ein.
Türmen, aber richtig
Formal durchdringt der dreieckige Turm mit seiner Stabkonstruktion auch den zweigeschossigen Neubau, wechselt jedoch an dessen Dachniveau von einer Stahl- in eine Betonkonstruktion. Entsprechend finden sich bis hinab zum Erdgeschoss entsprechende Diagonalträger, die jedoch mal freistehen, mal durchdrungen und mal ausgefacht werden. Statisch sind diese Betonelemente ein Zwitter, da sie formal zur Turmkonstruktion zählen, aber auch den Neubau mit aussteifen. Die aufgehende Stahlkonstruktion ist ein statisch bestimmtes Raumtragwerk. Es besteht aus einer momentenfreien Addition räumlich verknüpfter Dreiecke. Zwängungskräfte können nur durch thermische Spannungen infolge von Sonneneinstrahlung entstehen. In diesem Zusammenhang war bei dem Bauwerk die Helligkeit des Anstrichs relevant, auch wurden verschiedene Temperaturlastfälle bei unterschiedlichen Grauwerten des Anstrichs durchgespielt.
Formal durchdringt der dreieckige Turm mit seiner Stabkonstruktion auch den zweigeschossigen Neubau, wechselt jedoch an dessen Dachniveau von einer Stahl- in eine Betonkonstruktion. Entsprechend finden sich bis hinab zum Erdgeschoss entsprechende Diagonalträger, die jedoch mal freistehen, mal durchdrungen und mal ausgefacht werden. Statisch sind diese Betonelemente ein Zwitter, da sie formal zur Turmkonstruktion zählen, aber auch den Neubau mit aussteifen. Die aufgehende Stahlkonstruktion ist ein statisch bestimmtes Raumtragwerk. Es besteht aus einer momentenfreien Addition räumlich verknüpfter Dreiecke. Zwängungskräfte können nur durch thermische Spannungen infolge von Sonneneinstrahlung entstehen. In diesem Zusammenhang war bei dem Bauwerk die Helligkeit des Anstrichs relevant, auch wurden verschiedene Temperaturlastfälle bei unterschiedlichen Grauwerten des Anstrichs durchgespielt.
Keine gordischen Knoten
Es ist das statische Ideal, Stäbe direkt in ihren Knoten kraftschlüssig miteinander zu verbinden, konstruktiv ist das meistens nicht zu realisieren. Tatsächlich wurden hier die geschweißten Knotenpunkte als komplette Bauteile vorgefertigt an die Baustelle geliefert, um dann daran die schweren Stahlrohrstäbe zu monieren. Die Verbindung über klassische Ringflanschanschlüsse jedoch wollte man nicht zeigen, da dies zu industriell gewirkt hätte. Daher verjüngten die Konstrukteure, etwa 40 cm von dem eigentlichen Knotenpunkt entfernt, den jeweiligen Stabquerschnitt massiv und ließen darauf eine runde Flanschplatte im ursprünglichen Rohrdurchmesser aufschweißen. Auch die Stahlrundstäbe endeten in gleicher Weise, und die Konstruktion ließ sich ohne Schweißen verschrauben. Um die verjüngten Flanschansätze unsichtbar zu machen, verblendete man diese mit dünnen Stahlblechhalbschalen. Sie sind reversibel und können zu Revisionszwecken entfernt werden.
Es ist das statische Ideal, Stäbe direkt in ihren Knoten kraftschlüssig miteinander zu verbinden, konstruktiv ist das meistens nicht zu realisieren. Tatsächlich wurden hier die geschweißten Knotenpunkte als komplette Bauteile vorgefertigt an die Baustelle geliefert, um dann daran die schweren Stahlrohrstäbe zu monieren. Die Verbindung über klassische Ringflanschanschlüsse jedoch wollte man nicht zeigen, da dies zu industriell gewirkt hätte. Daher verjüngten die Konstrukteure, etwa 40 cm von dem eigentlichen Knotenpunkt entfernt, den jeweiligen Stabquerschnitt massiv und ließen darauf eine runde Flanschplatte im ursprünglichen Rohrdurchmesser aufschweißen. Auch die Stahlrundstäbe endeten in gleicher Weise, und die Konstruktion ließ sich ohne Schweißen verschrauben. Um die verjüngten Flanschansätze unsichtbar zu machen, verblendete man diese mit dünnen Stahlblechhalbschalen. Sie sind reversibel und können zu Revisionszwecken entfernt werden.
Die ondulierte Membrane
Auch die weithin sichtbare Membrane fußt auf einem Dreieck, sie formt einen Strumpf, der sich helixartig in die Höhe schraubt. Der Turm besitzt fünf konstruktive Ebenen, was horizontale Dreiecksflächen bezeichnet, in denen die Membrane mit Spannstäben, so genannten „Links“, nach außen zu den jeweiligen Knotenpunkten gezogen wird. Auf jeder Ebene wird der textile Schlauch um 60 °- also um eine Dreiecks- Ecke -, verdreht, wodurch er eine sphärische Krümmung erfährt und formstabil wird. Mit der Formfindung, Berechnung, Konstruktion, Ausschreibung und Fachbauleitung war das Radolfzeller Ingenieurbüro formTL betraut, deren Geschäftsführer Gerd Schmid ein kalkuliertes Krümmen von textilen Flächen gerne als ein „Ondulieren“ bezeichnet wodurch eine geometrische Steifigkeit der ansonsten biegeunsteifen Membrane entstehe. Die strumpfartige Membrane besteht im Wesentlichen aus drei Teilflächen, die aus jeweils sechs zweidimensionalen Bahnen mit einer Überlappung von 6 cm Hochfrequenzverschweißt wurden. Mit dieser Technik können dauerhafte Verbindungen erreicht werden, die eine Festigkeit von 90 % der Membranfestigkeit besitzen. Tatsächlich gilt das Verfahren, das mit hochfrequenten Schweißelektroden durchgeführt wird, als besonders leistungsfähig, da es das Gewebe nicht verletzt und eine wasserdichte Oberfläche schafft.
Auch die weithin sichtbare Membrane fußt auf einem Dreieck, sie formt einen Strumpf, der sich helixartig in die Höhe schraubt. Der Turm besitzt fünf konstruktive Ebenen, was horizontale Dreiecksflächen bezeichnet, in denen die Membrane mit Spannstäben, so genannten „Links“, nach außen zu den jeweiligen Knotenpunkten gezogen wird. Auf jeder Ebene wird der textile Schlauch um 60 °- also um eine Dreiecks- Ecke -, verdreht, wodurch er eine sphärische Krümmung erfährt und formstabil wird. Mit der Formfindung, Berechnung, Konstruktion, Ausschreibung und Fachbauleitung war das Radolfzeller Ingenieurbüro formTL betraut, deren Geschäftsführer Gerd Schmid ein kalkuliertes Krümmen von textilen Flächen gerne als ein „Ondulieren“ bezeichnet wodurch eine geometrische Steifigkeit der ansonsten biegeunsteifen Membrane entstehe. Die strumpfartige Membrane besteht im Wesentlichen aus drei Teilflächen, die aus jeweils sechs zweidimensionalen Bahnen mit einer Überlappung von 6 cm Hochfrequenzverschweißt wurden. Mit dieser Technik können dauerhafte Verbindungen erreicht werden, die eine Festigkeit von 90 % der Membranfestigkeit besitzen. Tatsächlich gilt das Verfahren, das mit hochfrequenten Schweißelektroden durchgeführt wird, als besonders leistungsfähig, da es das Gewebe nicht verletzt und eine wasserdichte Oberfläche schafft.
Doppelter Leuchtturm
Die Ingenieure von formTL entschieden sich bei dem Lüdenscheider Phänomenta- Turm für PVC-beschichtetes Polyestergewebe als Membranmaterial nicht deshalb, weil es kostengünstiger ist als die Optionen PTFE- Glasgewebe. Das PVC- Polyestergewebe war hier wegen seiner „gutmütigen“ Eigenschaften das Material der Wahl. Ähnlich einem Zelt lässt es sich in einen engen Packsack hineinfalten und in gewissen Maßen weich ausgerundet „in Form spannen“, beides sind essentielle Kriterien für einen gewundenen Turmbau wie diesen. PTFE- Glasgewebe verhält sich hingegen eher wie ein dünnes Blech. Bei diesem Bau werden drei 26 mm starke Seile über die gesamte Bauhöhe durch die Membranhülle geführt, die den Membranstrumpf in relevanter Weise kanten. Hier kann sich PTFE- Glasgewebe als schadensanfälliger erweisen. Ferner war eine eher gering transluzente Membranhülle gewünscht, da der Turm des Nachts aus sich heraus leuchten sollte. Tatsächlich ist der Pendelbau in doppelter Hinsicht ein Leuchtturmprojekt. So ist er nicht nur als neue Lüdenscheider Landmarke zu betrachten, sondern auch als einer der ganz wenigen Membranbauten der Welt mit einer vertikalen und raumbildenden Ausrichtung. Denn normalerweise werden vorgespannte Membranen flächig als Dach oder Fassade etwa bei Stadien eingesetzt.
Robert Mehl, Aachen
Die Ingenieure von formTL entschieden sich bei dem Lüdenscheider Phänomenta- Turm für PVC-beschichtetes Polyestergewebe als Membranmaterial nicht deshalb, weil es kostengünstiger ist als die Optionen PTFE- Glasgewebe. Das PVC- Polyestergewebe war hier wegen seiner „gutmütigen“ Eigenschaften das Material der Wahl. Ähnlich einem Zelt lässt es sich in einen engen Packsack hineinfalten und in gewissen Maßen weich ausgerundet „in Form spannen“, beides sind essentielle Kriterien für einen gewundenen Turmbau wie diesen. PTFE- Glasgewebe verhält sich hingegen eher wie ein dünnes Blech. Bei diesem Bau werden drei 26 mm starke Seile über die gesamte Bauhöhe durch die Membranhülle geführt, die den Membranstrumpf in relevanter Weise kanten. Hier kann sich PTFE- Glasgewebe als schadensanfälliger erweisen. Ferner war eine eher gering transluzente Membranhülle gewünscht, da der Turm des Nachts aus sich heraus leuchten sollte. Tatsächlich ist der Pendelbau in doppelter Hinsicht ein Leuchtturmprojekt. So ist er nicht nur als neue Lüdenscheider Landmarke zu betrachten, sondern auch als einer der ganz wenigen Membranbauten der Welt mit einer vertikalen und raumbildenden Ausrichtung. Denn normalerweise werden vorgespannte Membranen flächig als Dach oder Fassade etwa bei Stadien eingesetzt.
Robert Mehl, Aachen